BNA®文献
主要な特許文献番号
【2’,4’-BNANC】JP4731324B2; US7,427,672B2; EP1661905B9
【2’,4’-BNACOC】 JP5030998B2; US7,615,619B2; EP2354148B1
【5’-amino-2’,4’-BNA】 JP4383176B2; US7,615,619B2
【BNA CLAMP METHOD】JP6242336B2; US10,253,360B2; EP 2902499B1; CA2886334A1
BNANC関連論文
- Abdur Rahman, S.M., Seki. S., Haitani. S., Miyashita, K., Imanishi.T.
Highly Stable Pyrimidine-Motif Triplex Formation at Physiological pH Values by a Bridged Nculeci acid Analogues
Angew. Chem. Int. Ed., 2007, 46, 4306-4309.
- Abdur Rahman S.M., Seki, S., Yoshikawa, H., Miyashita, K., Imanishi, T.
Design, Synthesis, and Properties of 2',4'-BNANC: A Bridged Nculeic acid Analogue
J. Am. Chem. Soc., 2008, 130, 4886-4897.
- Miyashita, K., Rahman, S.M., Seki, S., Obika, S., Imanishi, T.
N-Methyl substituted 2’,4’-BNANC: a highly nuclease-resistant nucleic acid analogue with high-affinity RNA selective hybridization
Chem. Commun., 2007, 3765-3767.
- Rahman, S.M., Seki, S., Utsuki, K., Obika, S., Miyashita, K, Imanishi, T.
2',4'-BNANC: A Novel Bridged Nucleic Acid Analogue with Excellent Hybridizing and Nuclease Resistance Profiles
Nucleosides Nucleotides Nucleic Acids, 2007, 26, 1625-1628.
- Abdur Rahman, S.M., Sato, H., Tsuda, N., Haitani, S., Narukawa, K., Imanishi, T., Obika, S.
RNA interference with 2’,4’-bridged nucleic acid analogues
Bioorg. Med. Chem., 2010, 18, 3474-3480.
- Kuwahara, M., Obika, S., Nagashima, J., Ohta, Y., Suto, Y., Ozaki, H., Sawai, H., Imanishi, T.
Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2’,4’-bridged nucleosides
Nucleic Acids Res., 2008, 36, 4257-4265.
- Kuwahara, M., Obika, S., Takashima, H., Hagiwara, Y., Nagashima, J., Ozaki, H., Sawai, H., Imanishi, T.
Smart conferring of nuclease resistance to DNA by 3’-end protection using 2’,4’-bridged nucleoside-5’-triphosphates
Bioorg. Med. Chem. Lett., 2009, 19, 2941-2943.
- Torigoe, H., Abdur Rahman, S.M., Takuma, H., Sato, N., Imanishi, T., Obika, S., Sasaki, K.
Interrupted 2’-O,4’-C-Aminomethylene Bridged Nucleic Acid Modification Enhances Pyrimidine Motif Triplex-Forming Ability and Nuclease Resistance Under Physiological Condition
Nucleosides Nucleotides Nucleic Acids, 2011, 30, 63-81.
- Torigoe, H., Abdur Rahman, S.M., Takuma, H., Sato, N., Imanishi, T., Obika, S.
2’-O,4’-C-Aminomethylene-Bridged Nucleic Acid Modification with Enhancement of Nuclease Resistance Promotes Pyrimidine Motif Triplex Nucleic Acid Formation at Physiological pH
Chem. Eur. J., 2011, 17, 2742-51.
- Kasahara, Y., Kitadume, S., Morihiro, K., Kuwahara, M., Ozaki, H., Swai, H., Imanishi, T., Obika, S.
Effect of 3’-end capping of aptamer with various 2’,4’-bridged nucleotides: Enzymatic post-modification towards a practical use of polyclonal aptamers
Bioorg. Med. Chem. Lett., 2010, 20, 1626-1629.
- Shivarov, V., Ivanova, M., Naumova, E.
Rapid Detection of DNMT3A R882 Mutations in Hematologic Malignancies Using a Novel Bead-Based Suspension Assay with BNA(NC) Probes
PLOS ONE, 2014, 9, e99769.
- Oshima, T., Ishiguro, K., Suzuki, T., Kawahara, Y.
Quantification of methylation efficiency at a specific N6-methyladenosine position in rRNA by using BNA probes.
Chem. Commun., 2018,54, 9627-9630.
- Yamamoto, T., Harada-Shiba, M., Nakatani, M., Wada, S., Yasuhara, H., Narukawa, K., Sasaki, K., Shibata, M., Torigoe, H., Yamaoka, T., Imanishi, T., Obika, S.
Cholesterol-lowering Action of BNA-based Antisense Oligonucleotide Targeting PCSK9 in Atherogenic Diet-induced Hypercholesteromic Mice
Mol. Ther. Nucleic Acids, 2012, 1, e22.
- Prakash, T.P., Siwkowski, A., Allerson, C.R., Migawa, M.T., Lee, S., Gaus, J., Black, C., Seth, P.P., Swayze, E.E., Bhat, B.
Antisense Oligonucleotides Containing Conformationally Constrained 2’,4’-(N-Methoxy)aminomethylene and 2’,4’-Aminooxymethylene and 2’-O,4’-C-Aminomethylene Bridged Nucleotide Analogues Show Improved Potency in Animal Models
J. Med. Chem., 2010, 53, 1636-1650.
- Yamamoto, T., Yasuhara, H., Wada, F., Marada-Shiba, M., Imanishi, T., Obika, S.
Superior silencing by 2’,4’-BNANC-Based Short Antisense Oligonucleotides Compared to 2’,4’-BNA/LNA- Based Apolipoprotein B Antisense Inhibitors
J. Nucleic Acids, 2012, ID 707323.
- Kim SK, Castro A, Kim ES, Dinkel AP, Liu X, Castro M.
Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions
PLOS ONE, 2016, 11(1), e0147234.
- Manning KS, Rao AN, Castro M, Cooper TA.
BNANC Gapmers Revert Splicing and Reduce RNA Foci with Low Toxicity in Myotonic Dystrophy Cells
ACS Chem. Biol., 2017, 12, 2503–2509.
- Cromwell CR, Sung K, Park J, Krysler AR, Jovel J, Kim SK, Hubbard BP.
Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity
Nature Communications, 2018, 9, 1448.
その他の関連論文
- BNAs: novel nucleic acid analogs with a bridged sugar moiety
Chem. Commun., 2002, 1653-1659.
- Synthesis of Several Types of Bridged Nucleic Acids
Chemistry Letters, 2009, 38, 512-517.
- Towards the sequence-specific recognition of double-stranded DNA containing pyrimidine-purine interruptions by triplex-forming oligonucleotides [Mini-review]
Eur. J. Org. Chem., 2012, 2875-2887.
- Cleavage of oligonucleotides containing a P3’→N5’ phosphoramidate linkage mediated by single-stranded oligonucleotide templates
Molecules, 2011, 16, 10695-10708.
- Acid-mediated cleavage of oligonucleotide P3’→N5’ phosphoramidates triggered by sequence-specific triplex formation
Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 893-896.
- Synthesis and properties of a novel bridged nucleic acid with a P3’→N5’ phosphoramidate linkage, 5’-amino-2’,4’-BNA
Chem. Commun., 2003, 2202-2203.
- Double-stranded DNA-templated cleavage of oligonucleotides containing a P3’→N5’ linkage triggered by triplex formation: the effects of chemical modifications and remarkable enhancement in reactivity
Nucleic Acids Res., 2010, 38, 7332-7342.
- Synthesis and propertied of 3’-amino-2’,4’-BNA, a bridged nucleic acid with a N3’→P5’ phosphoramidate linkage
Bioorg. Med. Chem., 2008, 16, 9230-9237.
- Synthesis and properties of 2’-O,4’-C-methyleneoxymethylene bridged nucleic acid
Bioorg. Med. Chem., 2006, 14, 1029-1038.
- Adjustment of the γ dihedral angle of an oligonucleotide P3’→N5’ phosphoramidate enhances its binding affinity towards complementary strands
Angew. Chem. Int. Ed., 2005, 44, 1944-1947.
- Bridged nucleic acids: development, synthesis and properties [Review]
Heterocycles, 2010, 81, 1347-1392.