【2’,4’-BNANC】JP4731324B2; US7,427,672B2; EP1661905B9
【2’,4’-BNACOC】 JP5030998B2; US7,615,619B2; EP2354148B1
【5’-amino-2’,4’-BNA】 JP4383176B2; US7,615,619B2
【BNA CLAMP METHOD】JP6242336B2; US10,253,360B2; EP 2902499B1; CA2886334A1

  1. Abdur Rahman, S.M., Seki. S., Haitani. S., Miyashita, K., Imanishi.T.
    Highly Stable Pyrimidine-Motif Triplex Formation at Physiological pH Values by a Bridged Nculeci acid Analogues
    Angew. Chem. Int. Ed., 2007, 46, 4306-4309.
  2. Abdur Rahman S.M., Seki, S., Yoshikawa, H., Miyashita, K., Imanishi, T.
    Design, Synthesis, and Properties of 2',4'-BNANC: A Bridged Nculeic acid Analogue
    J. Am. Chem. Soc., 2008, 130, 4886-4897.
  3. Miyashita, K., Rahman, S.M., Seki, S., Obika, S., Imanishi, T.
    N-Methyl substituted 2’,4’-BNANC: a highly nuclease-resistant nucleic acid analogue with high-affinity RNA selective hybridization
    Chem. Commun., 2007, 3765-3767.
  4. Rahman, S.M., Seki, S., Utsuki, K., Obika, S., Miyashita, K, Imanishi, T.
    2',4'-BNANC: A Novel Bridged Nucleic Acid Analogue with Excellent Hybridizing and Nuclease Resistance Profiles
    Nucleosides Nucleotides Nucleic Acids, 2007, 26, 1625-1628.
  5. Abdur Rahman, S.M., Sato, H., Tsuda, N., Haitani, S., Narukawa, K., Imanishi, T., Obika, S.
    RNA interference with 2’,4’-bridged nucleic acid analogues
    Bioorg. Med. Chem., 2010, 18, 3474-3480.
  6. Kuwahara, M., Obika, S., Nagashima, J., Ohta, Y., Suto, Y., Ozaki, H., Sawai, H., Imanishi, T.
    Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2’,4’-bridged nucleosides
    Nucleic Acids Res., 2008, 36, 4257-4265.
  7. Kuwahara, M., Obika, S., Takashima, H., Hagiwara, Y., Nagashima, J., Ozaki, H., Sawai, H., Imanishi, T.
    Smart conferring of nuclease resistance to DNA by 3’-end protection using 2’,4’-bridged nucleoside-5’-triphosphates
    Bioorg. Med. Chem. Lett., 2009, 19, 2941-2943.
  8. Torigoe, H., Abdur Rahman, S.M., Takuma, H., Sato, N., Imanishi, T., Obika, S., Sasaki, K.
    Interrupted 2’-O,4’-C-Aminomethylene Bridged Nucleic Acid Modification Enhances Pyrimidine Motif Triplex-Forming Ability and Nuclease Resistance Under Physiological Condition
    Nucleosides Nucleotides Nucleic Acids, 2011, 30, 63-81.
  9. Torigoe, H., Abdur Rahman, S.M., Takuma, H., Sato, N., Imanishi, T., Obika, S.
    2’-O,4’-C-Aminomethylene-Bridged Nucleic Acid Modification with Enhancement of Nuclease Resistance Promotes Pyrimidine Motif Triplex Nucleic Acid Formation at Physiological pH
    Chem. Eur. J., 2011, 17, 2742-51.
  10. Kasahara, Y., Kitadume, S., Morihiro, K., Kuwahara, M., Ozaki, H., Swai, H., Imanishi, T., Obika, S.
    Effect of 3’-end capping of aptamer with various 2’,4’-bridged nucleotides: Enzymatic post-modification towards a practical use of polyclonal aptamers
    Bioorg. Med. Chem. Lett., 2010, 20, 1626-1629.
<Diagnostics and Researches(核酸検出)>
  1. Shivarov, V., Ivanova, M., Naumova, E.
    Rapid Detection of DNMT3A R882 Mutations in Hematologic Malignancies Using a Novel Bead-Based Suspension Assay with BNA(NC) Probes
    PLOS ONE, 2014, 9, e99769.
  2. Oshima, T., Ishiguro, K., Suzuki, T., Kawahara, Y.
    Quantification of methylation efficiency at a specific N6-methyladenosine position in rRNA by using BNA probes.
    Chem. Commun., 2018,54, 9627-9630.
<Therapeutics and Researches(核酸医薬)>
  1. Yamamoto, T., Harada-Shiba, M., Nakatani, M., Wada, S., Yasuhara, H., Narukawa, K., Sasaki, K., Shibata, M., Torigoe, H., Yamaoka, T., Imanishi, T., Obika, S.
    Cholesterol-lowering Action of BNA-based Antisense Oligonucleotide Targeting PCSK9 in Atherogenic Diet-induced Hypercholesteromic Mice
    Mol. Ther. Nucleic Acids, 2012, 1, e22.
  2. Prakash, T.P., Siwkowski, A., Allerson, C.R., Migawa, M.T., Lee, S., Gaus, J., Black, C., Seth, P.P., Swayze, E.E., Bhat, B.
    Antisense Oligonucleotides Containing Conformationally Constrained 2’,4’-(N-Methoxy)aminomethylene and 2’,4’-Aminooxymethylene and 2’-O,4’-C-Aminomethylene Bridged Nucleotide Analogues Show Improved Potency in Animal Models
    J. Med. Chem., 2010, 53, 1636-1650.
  3. Yamamoto, T., Yasuhara, H., Wada, F., Marada-Shiba, M., Imanishi, T., Obika, S.
    Superior silencing by 2’,4’-BNANC-Based Short Antisense Oligonucleotides Compared to 2’,4’-BNA/LNA- Based Apolipoprotein B Antisense Inhibitors
    J. Nucleic Acids, 2012, ID 707323.
  4. Kim SK, Castro A, Kim ES, Dinkel AP, Liu X, Castro M.
    Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions
    PLOS ONE, 2016, 11(1), e0147234.
  5. Manning KS, Rao AN, Castro M, Cooper TA.
    BNANC Gapmers Revert Splicing and Reduce RNA Foci with Low Toxicity in Myotonic Dystrophy Cells
    ACS Chem. Biol., 2017, 12, 2503–2509.
  6. Cromwell CR, Sung K, Park J, Krysler AR, Jovel J, Kim SK, Hubbard BP.
    Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity
    Nature Communications, 2018, 9, 1448.


  1. BNAs: novel nucleic acid analogs with a bridged sugar moiety
    Chem. Commun., 2002, 1653-1659.
  2. Synthesis of Several Types of Bridged Nucleic Acids
    Chemistry Letters, 2009, 38, 512-517.
  3. Towards the sequence-specific recognition of double-stranded DNA containing pyrimidine-purine interruptions by triplex-forming oligonucleotides [Mini-review]
    Eur. J. Org. Chem., 2012, 2875-2887.
  4. Cleavage of oligonucleotides containing a P3’→N5’ phosphoramidate linkage mediated by single-stranded oligonucleotide templates
    Molecules, 2011, 16, 10695-10708.
  5. Acid-mediated cleavage of oligonucleotide P3’→N5’ phosphoramidates triggered by sequence-specific triplex formation
    Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 893-896.
  6. Synthesis and properties of a novel bridged nucleic acid with a P3’→N5’ phosphoramidate linkage, 5’-amino-2’,4’-BNA
    Chem. Commun., 2003, 2202-2203.
  7. Double-stranded DNA-templated cleavage of oligonucleotides containing a P3’→N5’ linkage triggered by triplex formation: the effects of chemical modifications and remarkable enhancement in reactivity
    Nucleic Acids Res., 2010, 38, 7332-7342.
  8. Synthesis and propertied of 3’-amino-2’,4’-BNA, a bridged nucleic acid with a N3’→P5’ phosphoramidate linkage
    Bioorg. Med. Chem., 2008, 16, 9230-9237.
  9. Synthesis and properties of 2’-O,4’-C-methyleneoxymethylene bridged nucleic acid
    Bioorg. Med. Chem., 2006, 14, 1029-1038.
  10. Adjustment of the γ dihedral angle of an oligonucleotide P3’→N5’ phosphoramidate enhances its binding affinity towards complementary strands
    Angew. Chem. Int. Ed., 2005, 44, 1944-1947.
  11. Bridged nucleic acids: development, synthesis and properties [Review]
    Heterocycles, 2010, 81, 1347-1392.




BNA専用 お問い合わせ



平日 AM 10:00 ~ PM 5:00